2.5: Using Transformations to Graph Functions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    6237
    • 2.5: Using Transformations to Graph Functions (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Define the rigid transformations and use them to sketch graphs.
    • Define the non-rigid transformations and use them to sketch graphs.

    Vertical and Horizontal Translations

    When the graph of a function is changed in appearance and/or location we call it a transformation. There are two types of transformations. A rigid transformation57 changes the location of the function in a coordinate plane, but leaves the size and shape of the graph unchanged. A non-rigid transformation58 changes the size and/or shape of the graph.

    A vertical translation59 is a rigid transformation that shifts a graph up or down relative to the original graph. This occurs when a constant is added to any function. If we add a positive constant to each \(y\)-coordinate, the graph will shift up. If we add a negative constant, the graph will shift down. For example, consider the functions \(g(x) = x^{2} − 3\) and \(h(x) = x^{2} + 3\). Begin by evaluating for some values of the independent variable \(x\).

    2.5: Using Transformations to Graph Functions (2)

    Now plot the points and compare the graphs of the functions \(g\) and \(h\) to the basic graph of \(f(x) = x^{2}\), which is shown using a dashed grey curve below.

    2.5: Using Transformations to Graph Functions (3)

    The function \(g\) shifts the basic graph down \(3\) units and the function \(h\) shifts the basic graph up \(3\) units. In general, this describes the vertical translations; if \(k\) is any positive real number:

    Vertical shift up \(k\) units: \(F(x)=f(x)+k\)
    Vertical shift down \(k\) units: \(F(x)=f(x)-k\)
    Table \(\PageIndex{1}\)

    Example \(\PageIndex{1}\):

    Sketch the graph of \(g(x)=\sqrt{x}+4\).

    Solution

    Begin with the basic function defined by \(f(x)=\sqrt{x}\) and shift the graph up \(4\) units.

    Answer:

    2.5: Using Transformations to Graph Functions (4)

    A horizontal translation60 is a rigid transformation that shifts a graph left or right relative to the original graph. This occurs when we add or subtract constants from the \(x\)-coordinate before the function is applied. For example, consider the functions defined by \(g(x)=(x+3)^{2}\) and \(h(x)=(x−3)^{2}\) and create the following tables:

    2.5: Using Transformations to Graph Functions (5)

    Here we add and subtract from the x-coordinates and then square the result. This produces a horizontal translation.

    2.5: Using Transformations to Graph Functions (6)

    Note that this is the opposite of what you might expect. In general, this describes the horizontal translations; if \(h\) is any positive real number:

    Horizontal shift left \(h\) units: \(F(x)=f(x+h)\)
    Horizontal shift right \(h\) units: \(F(x)=f(x-h)\)
    Table \(\PageIndex{2}\)

    Example \(\PageIndex{2}\):

    Sketch the graph of \(g(x)=(x−4)^{3}\).

    Solution

    Begin with a basic cubing function defined by \(f(x)=x^{3}\) and shift the graph \(4\) units to the right.

    Answer:

    2.5: Using Transformations to Graph Functions (7)

    It is often the case that combinations of translations occur.

    Example \(\PageIndex{3}\):

    Sketch the graph of \(g(x)=|x+3|−5\).

    Solution

    Start with the absolute value function and apply the following transformations.

    \(\begin{array} { l } { y = | x | } \quad\quad\quad\quad\color{Cerulean}{Basic \:function} \\ { y = | x + 3 | } \quad\: \quad\color{Cerulean}{Horizontal \:shift \: left \:3 \:units} \\ { y = | x + 3 | - 5 } \:\:\:\color{Cerulean}{Vertical \:shift \:down \:5 \:units} \end{array}\)

    Answer:

    2.5: Using Transformations to Graph Functions (8)

    The order in which we apply horizontal and vertical translations does not affect the final graph.

    Example \(\PageIndex{4}\):

    Sketch the graph of \(g ( x ) = \frac { 1 } { x - 5 } + 3\).

    Solution

    Begin with the reciprocal function and identify the translations.

    \(\begin{array} { l } { y = \frac{1}{x} } \quad\quad\quad\quad\color{Cerulean}{Basic \:function} \\ { y = \frac{1}{x-5} } \quad\: \quad\:\:\:\color{Cerulean}{Horizontal \:shift \: left \:3 \:units} \\ { y = \frac{1}{x-5} +3 } \:\:\:\:\:\:\:\color{Cerulean}{Vertical \:shift \:down \:5 \:units} \end{array}\)

    Take care to shift the vertical asymptote from the y-axis 5 units to the right and shift the horizontal asymptote from the x-axis up 3 units.

    Answer:

    2.5: Using Transformations to Graph Functions (9)

    Exercise \(\PageIndex{1}\)

    Sketch the graph of \(g ( x ) = ( x - 2 ) ^ { 2 } + 1\).

    Answer
    2.5: Using Transformations to Graph Functions (10)

    www.youtube.com/v/6F6zKaogxTE

    Reflections

    A reflection61 is a transformation in which a mirror image of the graph is produced about an axis. In this section, we will consider reflections about the \(x\)- and \(y\)-axis. The graph of a function is reflected about the \(x\)-axis if each \(y\)-coordinate is multiplied by \(−1\). The graph of a function is reflected about the \(y\)-axis if each \(x\)-coordinate is multiplied by \(−1\) before the function is applied. For example, consider \(g(x)=\sqrt{−x}\) and \(h(x)=−\sqrt{x}\).

    2.5: Using Transformations to Graph Functions (11)

    Compare the graph of \(g\) and \(h\) to the basic square root function defined by \(f(x)=\sqrt{x}\), shown dashed in grey below:

    2.5: Using Transformations to Graph Functions (12)

    The first function \(g\) has a negative factor that appears “inside” the function; this produces a reflection about the \(y\)-axis. The second function \(h\) has a negative factor that appears “outside” the function; this produces a reflection about the \(x\)-axis. In general, it is true that:

    Reflection about the \(y\)-axis: \(F ( x ) = f ( - x )\)
    Reflection about the \(x\)-axis: \(F ( x ) = - f ( x )\)
    Table \(\PageIndex{3}\)

    When sketching graphs that involve a reflection, consider the reflection first and then apply the vertical and/or horizontal translations.

    Example \(\PageIndex{5}\):

    Sketch the graph of \(g ( x ) = - ( x + 5 ) ^ { 2 } + 3\).

    Solution

    Begin with the squaring function and then identify the transformations starting with any reflections.

    \(\begin{array} { l } { y = x ^ { 2 } } \quad\quad\quad\quad\quad\quad\color{Cerulean}{Basic\: function.} \\ { y = - x ^ { 2 } } \quad\quad\quad\quad\quad\:\color{Cerulean}{Relfection\: about\: the\: x-axis.} \\ { y = - ( x + 5 ) ^ { 2 } } \quad\quad\:\:\:\color{Cerulean}{Horizontal\: shift\: left\: 5\: units.} \\ { y = - ( x + 5 ) ^ { 2 } + 3 } \quad\color{Cerulean}{Vertical\: shift\: up\: 3\: units.} \end{array}\)

    Use these translations to sketch the graph.

    Answer:

    2.5: Using Transformations to Graph Functions (13)

    Exercise \(\PageIndex{2}\)

    Sketch the graph of \(g ( x ) = - | x | + 3\).

    Answer
    2.5: Using Transformations to Graph Functions (14)

    www.youtube.com/v/XsbLkFWWzBc

    Dilations

    Horizontal and vertical translations, as well as reflections, are called rigid transformations because the shape of the basic graph is left unchanged, or rigid. Functions that are multiplied by a real number other than \(1\), depending on the real number, appear to be stretched vertically or stretched horizontally. This type of non-rigid transformation is called a dilation62. For example, we can multiply the squaring function \(f(x) = x^{2}\) by \(4\) and \(\frac{1}{4}\) to see what happens to the graph.

    2.5: Using Transformations to Graph Functions (15)

    Compare the graph of \(g\) and \(h\) to the basic squaring function defined by \(f(x)=x^{2}\), shown dashed in grey below:

    2.5: Using Transformations to Graph Functions (16)

    The function \(g\) is steeper than the basic squaring function and its graph appears to have been stretched vertically. The function \(h\) is not as steep as the basic squaring function and appears to have been stretched horizontally.

    In general, we have:

    Dilation: \(F ( x ) = a \cdot f ( x )\)
    Table \(\PageIndex{4}\)

    If the factor \(a\) is a nonzero fraction between \(−1\) and \(1\), it will stretch the graph horizontally. Otherwise, the graph will be stretched vertically. If the factor \(a\) is negative, then it will produce a reflection as well.

    Example \(\PageIndex{6}\):

    Sketch the graph of \(g ( x ) = - 2 | x - 5 | - 3\).

    Solution

    Here we begin with the product of \(−2\) and the basic absolute value function: \(y=−2|x|\).This results in a reflection and a dilation.

    2.5: Using Transformations to Graph Functions (17)

    Use the points \(\{(−1, −2), (0, 0), (1, −2)\}\) to graph the reflected and dilated function \(y=−2|x|\). Then translate this graph \(5\) units to the right and \(3\) units down.

    \(\begin{array} { l } { y = - 2 | x | } \quad\quad\quad\quad\:\color{Cerulean}{Basic\: graph\: with\: dilation\: and\: reflection\: about\: the\: x-axis.}\\ { y = - 2 | x - 5 | } \quad\quad\:\:\color{Cerulean}{Shift\: right\: 5\: units.} \\ { y = - 2 | x - 5 | - 3 } \:\:\:\:\color{Cerulean}{Shift\: down\: 3\: units.} \end{array}\)

    Answer:

    2.5: Using Transformations to Graph Functions (18)

    In summary, given positive real numbers \(h\) and \(k\):

    Vertical shift up \(k\) units: \(F(x)=f(x)+k\)
    Vertical shift down \(k\) units: \(F(x)=f(x)-k\)
    Table \(\PageIndex{1}\)
    Horizontal shift left \(h\) units: \(F(x)=f(x+h)\)
    Horizontal shift right \(h\) units: \(F(x)=f(x-h)\)
    Table \(\PageIndex{2}\)
    Reflection about the \(y\)-axis: \(F ( x ) = f ( - x )\)
    Reflection about the \(x\)-axis: \(F ( x ) = - f ( x )\)
    Table \(\PageIndex{3}\)
    Dilation: \(F ( x ) = a \cdot f ( x )\)
    Table \(\PageIndex{4}\)

    Key Takeaways

    • Identifying transformations allows us to quickly sketch the graph of functions. This skill will be useful as we progress in our study of mathematics. Often a geometric understanding of a problem will lead to a more elegant solution.
    • If a positive constant is added to a function, \(f(x) + k\), the graph will shift up. If a positive constant is subtracted from a function, \(f(x) − k\), the graph will shift down. The basic shape of the graph will remain the same.
    • If a positive constant is added to the value in the domain before the function is applied, \(f(x + h)\), the graph will shift to the left. If a positive constant is subtracted from the value in the domain before the function is applied, \(f(x − h)\), the graph will shift right. The basic shape will remain the same.
    • Multiplying a function by a negative constant, \(−f(x)\), reflects its graph in the \(x\)-axis. Multiplying the values in the domain by \(−1\) before applying the function, \(f(−x)\), reflects the graph about the \(y\)-axis.
    • When applying multiple transformations, apply reflections first.
    • Multiplying a function by a constant other than \(1\), \(a ⋅ f(x)\), produces a dilation. If the constant is a positive number greater than \(1\), the graph will appear to stretch vertically. If the positive constant is a fraction less than \(1\), the graph will appear to stretch horizontally.

    Exercise \(\PageIndex{3}\)

    Match the graph to the function definition.

    2.5: Using Transformations to Graph Functions (19)
    2.5: Using Transformations to Graph Functions (20)
    2.5: Using Transformations to Graph Functions (21)
    2.5: Using Transformations to Graph Functions (22)
    2.5: Using Transformations to Graph Functions (23)
    2.5: Using Transformations to Graph Functions (24)
    1. \(f(x) = \sqrt{x + 4}\)
    2. \(f(x) = |x − 2| − 2\)
    3. \(f(x) = \sqrt{x + 1} -1\)
    4. \(f(x) = |x − 2| + 1\)
    5. \(f(x) = \sqrt{x + 4} + 1\)
    6. \(f(x) = |x + 2| − 2\)
    Answer

    1. e

    3. d

    5. f

    Exercise \(\PageIndex{4}\)

    Graph the given function. Identify the basic function and translations used to sketch the graph. Then state the domain and range.

    1. \(f(x) = x + 3\)
    2. \(f(x) = x − 2\)
    3. \(g(x) = x^{2} + 1\)
    4. \(g(x) = x^{2} − 4\)
    5. \(g(x) = (x − 5)^{2}\)
    6. \(g(x) = (x + 1)^{2}\)
    7. \(g(x) = (x − 5)^{2} + 2\)
    8. \(g(x) = (x + 2)^{2} − 5\)
    9. \(h(x) = |x + 4|\)
    10. \(h(x) = |x − 4|\)
    11. \(h(x) = |x − 1| − 3\)
    12. \(h(x) = |x + 2| − 5\)
    13. \(g(x) = \sqrt{x} − 5\)
    14. \(g(x) = \sqrt{x − 5}\)
    15. \(g(x) = \sqrt{x − 2} + 1\)
    16. \(g(x) = \sqrt{x + 2} + 3\)
    17. \(h(x) = (x − 2)^{3}\)
    18. \(h(x) = x^{3} + 4\)
    19. \(h(x) = (x − 1)^{3} − 4\)
    20. \(h(x) = (x + 1)^{3} + 3\)
    21. \(f(x) = \frac{1}{x−2}\)
    22. \(f(x) = \frac{1}{x+3}\)
    23. \(f(x) = \frac{1}{x} + 5\)
    24. \(f(x) = \frac{1}{x} − 3\)
    25. \(f(x) = \frac{1}{x+1} − 2\)
    26. \(f(x) = \frac{1}{x−3} + 3\)
    27. \(g(x) = −4\)
    28. \(g(x) = 2\)
    29. \(f ( x ) = \sqrt [ 3 ] { x - 2 } + 6\)
    30. \(f ( x ) = \sqrt [ 3 ] { x + 8 } - 4\)
    Answer

    1. \(y = x\); Shift up \(3\) units; domain: \(\mathbb{R}\); range: \(\mathbb{R}\)

    2.5: Using Transformations to Graph Functions (25)

    3. \(y = x^{2}\); Shift up \(1\) unit; domain: \(ℝ\); range: \([1, ∞)\)

    2.5: Using Transformations to Graph Functions (26)

    5. \(y = x^{2}\); Shift right \(5\) units; domain: \(ℝ\); range: \([0, ∞)\)

    2.5: Using Transformations to Graph Functions (27)

    7. \(y = x^{2}\); Shift right \(5\) units and up \(2\) units; domain: \(ℝ\); range: \([2, ∞)\)

    2.5: Using Transformations to Graph Functions (28)

    9. \(y = |x|\); Shift left \(4\) units; domain: \(ℝ\); range: \([0, ∞)\)

    2.5: Using Transformations to Graph Functions (29)

    11. \(y = |x|\); Shift right \(1\) unit and down \(3\) units; domain: \(ℝ\); range: \([−3, ∞)\)

    2.5: Using Transformations to Graph Functions (30)

    13. \(y = \sqrt{x}\); Shift down \(5\) units; domain: \([0, ∞)\); range: \([−5, ∞)\)

    2.5: Using Transformations to Graph Functions (31)

    15. \(y = \sqrt{x}\); Shift right \(2\) units and up \(1\) unit; domain: \([2, ∞)\); range: \([1, ∞)\)

    2.5: Using Transformations to Graph Functions (32)

    17. \(y = x^{3}\) ; Shift right \(2\) units; domain: \(ℝ\); range: \(ℝ\)

    2.5: Using Transformations to Graph Functions (33)

    19. \(y = x^{3}\); Shift right \(1\) unit and down \(4\) units; domain: \(ℝ\); range: \(ℝ\)

    2.5: Using Transformations to Graph Functions (34)

    21. \(y = \frac{1}{x}\); Shift right \(2\) units; domain: \((−∞, 2) ∪ (2, ∞)\); range: \((−∞, 0) ∪ (0, ∞)\)

    2.5: Using Transformations to Graph Functions (35)

    23. \(y = \frac{1}{x}\); Shift up \(5\) units; domain: \((−∞, 0) ∪ (0, ∞)\); range: \((−∞, 1) ∪ (1, ∞)\)

    2.5: Using Transformations to Graph Functions (36)

    25. \(y = \frac{1}{x}\); Shift left \(1\) unit and down \(2\) units; domain: \((−∞, −1) ∪ (−1, ∞)\); range: \((−∞, −2) ∪ (−2, ∞)\)

    2.5: Using Transformations to Graph Functions (37)

    27. Basic graph \(y = −4\); domain: \(ℝ\); range: \(\{−4\}\)

    2.5: Using Transformations to Graph Functions (38)

    29. \(y = \sqrt [ 3 ] { x }\); Shift up \(6\) units and right \(2\) units; domain: \(ℝ\); range: \(ℝ\)

    2.5: Using Transformations to Graph Functions (39)

    Exercise \(\PageIndex{5}\)

    Graph the piecewise functions.

    1. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } + 2 } & { \text { if } x < 0 } \\ { x + 2 } & { \text { if } x \geq 0 } \end{array} \right.\)
    2. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } - 3 \text { if } x < 0 } \\ { \sqrt { x } - 3 \text { if } x \geq 0 } \end{array} \right.\)
    3. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 3 } - 1 } & { \text { if } x < 0 } \\ { | x - 3 | - 4 } & { \text { if } x \geq 0 } \end{array} \right.\)
    4. \(h ( x ) = \left\{ \begin{array} { c c } { x ^ { 3 } } & { \text { if } x < 0 } \\ { ( x - 1 ) ^ { 2 } - 1 } & { \text { if } x \geq 0 } \end{array} \right.\)
    5. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } - 1 } & { \text { if } x < 0 } \\ { 2 } & { \text { if } x \geq 0 } \end{array} \right.\)
    6. \(h ( x ) = \left\{ \begin{array} { l l } { x + 2 } & { \text { if } x < 0 } \\ { ( x - 2 ) ^ { 2 } } & { \text { if } x \geq 0 } \end{array} \right.\)
    7. \(h ( x ) = \left\{ \begin{array} { l l } { ( x + 10 ) ^ { 2 } - 4 } & { \text { if } x < - 8 } \\ { x + 4 } & { \text { if } - 8 \leq x < - 4 } \\ { \sqrt { x + 4 } } & { \text { if } x \geq - 4 } \end{array} \right.\)
    8. \(f ( x ) = \left\{ \begin{array} { l l } { x + 10 } & { \text { if } x \leq - 10 } \\ { | x - 5 | - 15 } & { \text { if } - 10 < x \leq 20 } \\ { 10 } & { \text { if } x > 20 } \end{array} \right.\)
    Answer

    1.

    2.5: Using Transformations to Graph Functions (40)

    3.

    2.5: Using Transformations to Graph Functions (41)

    5.

    2.5: Using Transformations to Graph Functions (42)

    7.

    2.5: Using Transformations to Graph Functions (43)

    Exercise \(\PageIndex{6}\)

    Write an equation that represents the function whose graph is given.

    1.

    2.5: Using Transformations to Graph Functions (44)

    2.

    2.5: Using Transformations to Graph Functions (45)

    3.

    2.5: Using Transformations to Graph Functions (46)

    4.

    2.5: Using Transformations to Graph Functions (47)

    5.

    2.5: Using Transformations to Graph Functions (48)

    6.

    2.5: Using Transformations to Graph Functions (49)

    7.

    2.5: Using Transformations to Graph Functions (50)

    8.

    2.5: Using Transformations to Graph Functions (51)
    Answer

    1. \(f ( x ) = \sqrt { x - 5 }\)

    3. \(f ( x ) = ( x - 15 ) ^ { 2 } - 10\)

    5. \(f ( x ) = \frac { 1 } { x + 8 } + 4\)

    7. \(f ( x ) = \sqrt { x + 16 } - 4\)

    Exercise \(\PageIndex{6}\)

    Match the graph to the given function defintion.

    2.5: Using Transformations to Graph Functions (52)
    2.5: Using Transformations to Graph Functions (53)
    2.5: Using Transformations to Graph Functions (54)
    2.5: Using Transformations to Graph Functions (55)
    2.5: Using Transformations to Graph Functions (56)
    2.5: Using Transformations to Graph Functions (57)
    1. \(f ( x ) = - 3 | x |\)
    2. \(f ( x ) = - ( x + 3 ) ^ { 2 } - 1\)
    3. \(f ( x ) = - | x + 1 | + 2\)
    4. \(f ( x ) = - x ^ { 2 } + 1\)
    5. \(f ( x ) = - \frac { 1 } { 3 } | x |\)
    6. \(f ( x ) = - ( x - 2 ) ^ { 2 } + 2\)
    Answer

    1. b

    3. d

    5. f

    Exercise \(\PageIndex{7}\)

    Use the transformations to graph the following functions.

    1. \(f ( x ) = - x + 5\)
    2. \(f ( x ) = - | x | - 3\)
    3. \(g ( x ) = - | x - 1 |\)
    4. \(f ( x ) = - ( x + 2 ) ^ { 2 }\)
    5. \(h ( x ) = \sqrt { - x } + 2\)
    6. \(g ( x ) = - \sqrt { x } + 2\)
    7. \(g ( x ) = - ( x + 2 ) ^ { 3 }\)
    8. \(h ( x ) = - \sqrt { x - 2 } + 1\)
    9. \(g ( x ) = - x ^ { 3 } + 4\)
    10. \(f ( x ) = - x ^ { 2 } + 6\)
    11. \(f ( x ) = - 3 | x |\)
    12. \(g ( x ) = - 2 x ^ { 2 }\)
    13. \(h ( x ) = \frac { 1 } { 2 } ( x - 1 ) ^ { 2 }\)
    14. \(h ( x ) = \frac { 1 } { 3 } ( x + 2 ) ^ { 2 }\)
    15. \(g ( x ) = - \frac { 1 } { 2 } \sqrt { x - 3 }\)
    16. \(f ( x ) = - 5 \sqrt { x + 2 }\)
    17. \(f ( x ) = 4 \sqrt { x - 1 } + 2\)
    18. \(h ( x ) = - 2 x + 1\)
    19. \(g ( x ) = - \frac { 1 } { 4 } ( x + 3 ) ^ { 3 } - 1\)
    20. \(f ( x ) = - 5 ( x - 3 ) ^ { 2 } + 3\)
    21. \(h ( x ) = - 3 | x + 4 | - 2\)
    22. \(f ( x ) = - \frac { 1 } { x }\)
    23. \(f ( x ) = - \frac { 1 } { x + 2 }\)
    24. \(f ( x ) = - \frac { 1 } { x + 1 } + 2\)
    Answer

    1.

    2.5: Using Transformations to Graph Functions (58)

    3.

    2.5: Using Transformations to Graph Functions (59)

    5.

    2.5: Using Transformations to Graph Functions (60)

    7.

    2.5: Using Transformations to Graph Functions (61)

    9.

    2.5: Using Transformations to Graph Functions (62)

    11.

    2.5: Using Transformations to Graph Functions (63)

    13.

    2.5: Using Transformations to Graph Functions (64)

    15.

    2.5: Using Transformations to Graph Functions (65)

    17.

    2.5: Using Transformations to Graph Functions (66)

    19.

    2.5: Using Transformations to Graph Functions (67)

    21.

    2.5: Using Transformations to Graph Functions (68)

    23.

    2.5: Using Transformations to Graph Functions (69)

    Exercise \(\PageIndex{8}\)

    1. Use different colors to graph the family of graphs defined by \(y=kx^{2}\), where \(k \in \left\{ 1 , \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 1 } { 4 } \right\}\). What happens to the graph when the denominator of \(k\) is very large? Share your findings on the discussion board.
    2. Graph \(f ( x ) = \sqrt { x }\) and \(g ( x ) = - \sqrt { x }\) on the same set of coordinate axes. What does the general shape look like? Try to find a single equation that describes the shape. Share your findings.
    3. Explore what happens to the graph of a function when the domain values are multiplied by a factor \(a\) before the function is applied, \(f(ax)\). Develop some rules for this situation and share them on the discussion board.
    Answer

    1. Answer may vary

    3. Answer may vary

    Footnotes

    57A set of operations that change the location of a graph in a coordinate plane but leave the size and shape unchanged.

    58A set of operations that change the size and/or shape of a graph in a coordinate plane.

    59A rigid transformation that shifts a graph up or down.

    60A rigid transformation that shifts a graph left or right.

    61A transformation that produces a mirror image of the graph about an axis.

    62A non-rigid transformation, produced by multiplying functions by a nonzero real number, which appears to stretch the graph either vertically or horizontally.

    2.5: Using Transformations to Graph Functions (2024)

    FAQs

    How to do transformations of functions on a graph? ›

    Here are some rules to transform the given graph of function.
    1. f(x + a)horizontally shift the graph of f(x)left by a units.
    2. f(x - a)horizontally shift the graph of f(x) right by a units.
    3. f(x)+ a vertically shift the graph of f(x) upward by a units.
    4. f(x)- a vertically shift the graph of f(x) downwards by a units.

    What transformations are applied to the graph of the function? ›

    What are Function Transformations?
    TransformationFunctionChanges in Position/Size
    TranslationSlides or moves the curve.Change in position
    DilationStretches or shrinks the curve.Change in the size
    ReflectionFlips the curve and produces the mirror image.Change in position

    How to do transformations in math? ›

    The best way to perform a transformation on an object is to perform the required operations on the vertices of the preimage and then connect the dots to obtain the figure. A translation is performed by moving the preimage the requested number of spaces.

    What is the correct order to apply transformations? ›

    If a function has multiple transformations, they are applied in the following order: 1. Horizontal translation 2. Reflection, Stretching, Shrinking 3. Vertical Translation.

    How do you graph a function step by step? ›

    How To: Given the equation for a linear function, graph the function using the y-intercept and slope.
    1. Evaluate the function at an input value of zero to find the y-intercept.
    2. Identify the slope.
    3. Plot the point represented by the y-intercept.
    4. Use riserun to determine at least two more points on the line.

    What Transformations change the graph? ›

    Transformation of a graph: changing the shape and location of a graph. We already know there are four types of transformation geometry: translation (or shifting), reflection, rotation, and dilation (or stretching). The transformation that we will discuss is shifting horizontally or vertically.

    How do you describe Transformations? ›

    A transformation is a translation, rotation, reflection, or dilation, or a combination of these. A translation moves every point in a figure a given distance in a given direction. This diagram shows a translation of Figure A to Figure B using the direction and distance given by the arrow.

    What is the formula for transformation? ›

    Vertical Transformation: The function f(x) is transformed vertically to f(x) + a, or f(x) - a. Horizontal Transformation: The function f(x) is transformed horizontally to f(x + a), or f(x - a).

    How do you identify a function on a graph? ›

    If a vertical line can intersect the graph at two or more points, then the graph does not represent a function. In other words, if a vertical line drawn anywhere only intersects the graph at only one spot, this means that each x value corresponds to only one y value, so the graph represents a function.

    How do you identify the type of transformation? ›

    Let's look at four types of transformations: rotations (spinning a shape around a point), translations (shifting a shape), reflections (flipping a shape over a line), and dilations (shrinking or expanding a shape). We practice identifying these transformations in different pairs of figures.

    How to use transformations to graph? ›

    5 Steps To Graph Function Transformations In Algebra
    1. Identify The Parent Function. ...
    2. Reflect Over X-Axis or Y-Axis. ...
    3. Shift (Translate) Vertically or Horizontally. ...
    4. Vertical and Horizontal Stretches/Compressions. ...
    5. Plug in a couple of your coordinates into the parent function to double check your work.
    Jan 24, 2017

    What are all the function graph transformations? ›

    Any function can be transformed, horizontally and/or vertically, via four main types of transformations:
    • Horizontal and vertical shifts (or translations)
    • Horizontal and vertical shrinks (or compressions)
    • Horizontal and vertical stretches.
    • Horizontal and vertical reflections.

    How to do transformations of graphs of linear functions? ›

    Translations of linear functions are transformations that are a horizontal or vertical shift of the graph. To move the parent function vertically, either add or subtract a number to the y values. If f(x) = x, then f(x) + 3 would move the graph up by 3 units.

    What kind of transformation converts the graph? ›

    Answer and Explanation:

    Scaling is a transformation that changes the size and/or the shape of the graph of the function.

    What do we use transformations rules for? ›

    Rules of transformations help in transforming the function f(x) to a new function f'(x), because of the change in its domain or the range values. The function can be transformed vertically, horizontally, or it can be stretched or compressed, with the help of these rules of transformation.

    How do you graph translations? ›

    To move a graph up, we add a positive value to the y-value. To move a graph down, we add a negative value to the y-value. To move a graph right, we add a negative value to the x-value. To move a graph left, we add a positive value to the x-value.

    How do you graph a function from a graph? ›

    There are three basic methods of graphing linear functions. The first is by plotting points and then drawing a line through the points. The second is by using the y-intercept and slope. The third is applying transformations to the identity function f(x)=x f ( x ) = x .

    Top Articles
    Americans just can’t quit their giant, gas-burning trucks | CNN Business
    tweedehands auto kopen in Amsterdam
    Dirty South Swag Review | BatDigest.com
    Craigslist Lititz
    Champion Our Cause Wow
    Void Client Vrchat
    Sarah Lindstrom Telegram
    Pennymac Mortgage Investment Trust (PMT) Precio de acciones, noticias, cotización e historial de yahoo - Yahoo Finance
    Nextdoor Myvidster
    What's the Difference Between Halal and Haram Meat & Food?
    6Th Gen Camaro Forums
    Telegram Voyeur
    Nutrislice White Bear Lake
    The Haunting Of A Dream House By Reeves Wiedeman
    Iowa Image Trend
    Punishment - Chapter 1 - Go_mi - 鬼滅の刃
    Robotization Deviantart
    Verity Or Falsity Of A Proposition Crossword Clue
    Uitstekende taxi, matige gezinsauto: test Toyota Camry Hybrid – Autointernationaal.nl
    SIM Cards, Phone Cards & SIM Cards, Cell Phones & Accessories
    Dreamhorse For Sale
    Craigslist Pikeville Tn
    Cato's Dozen Crossword
    Wisconsin Public Library Consortium
    Log in or sign up to view
    Stick Tongue Out Gif
    18443168434
    Western Lake Erie - Lake Erie and Lake Ontario
    Current Students - Pace University Online
    Solarmovies Rick And Morty
    Paper Io 2 Unblocked Games Premium
    'I want to be the oldest Miss Universe winner - at 31'
    Enterprise Car Sales Jacksonville Used Cars
    Surface Area Formulas (video lessons, examples, step-by-step solutions)
    Dan And Riya Net Worth In 2022: How Does They Make Money?
    Fcs Punting Stats
    More massage parlors shut down by Roswell Police after ordinance violations
    Nail salons near me in West Hartford. Find a nail shop on Booksy!
    8 Common Things That are 7 Centimeters Long | Measuringly
    Vadoc Gtlvisitme App
    Warranty Killer Performance Reviews
    Houston Gun Traders
    Smithfield Okta Login
    Left Periprosthetic Femur Fracture Icd 10
    Atlanta Farm And Garden By Owner
    Crandon Skyward
    Watermelon Cucumber Basil Lemonade - Wine a Little, Cook a Lot
    Project Zomboid Sleeping Event
    Buzzn Dispensary
    Fantasy Football News, Stats and Analysis
    Car Hire in Romania from £4/day - Search for car rentals on KAYAK
    H'aanit's Third Chapter | Gamer Guides: Your ultimate sou...
    Latest Posts
    Article information

    Author: Sen. Emmett Berge

    Last Updated:

    Views: 5745

    Rating: 5 / 5 (60 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Sen. Emmett Berge

    Birthday: 1993-06-17

    Address: 787 Elvis Divide, Port Brice, OH 24507-6802

    Phone: +9779049645255

    Job: Senior Healthcare Specialist

    Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

    Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.